TARGET MATHEMATICS
Jhe Excellance Key...Dr. AGYAT GUPTA
(M.Sc, B.Ed., M.Phill, P.hd)

CODE:0902-AG-TS-06

REG.NO:-TMC -D/79/89/36/63

General Instructions :-

- (i) All Question are compulsory :
- (ii) This question paper contains **36** questions.
- (iii) Question 1-20 in PART- A are Objective type question carrying 1 mark each.
- (iv) Question 21-26 in PART -B are sort-answer type question carrying 2 mark each.
- (v) Question 27-32 in PART -C are long-answer-I type question carrying 4 mark each.
- (vi) Question 33-36 in PART -D are long-answer-II type question carrying 6 mark each
- (vii) You have to attempt only one if the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 8 printed pages.
- (x) Code number given on the right-hand side of the question paper should

be written on the title page of the answer-book by the candidate.

Time: 3 Hours

CLASS - XII

Maximum Marks : 80

MATHEMATICS

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com

PRE-BOARD EXAMINATION 2019 -20

PART - A (Question 1 to 20 carry 1 mark each.)

SECTION I: Single correct answer type

This section contains 12 multiple choice question. Each question has four

Q.1	The matrix $\begin{bmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ is non singular, if						
	(a) $\lambda \neq -2$ (b) $\lambda \neq 2$ (c) $\lambda \neq 3$ (d) $\lambda \neq -3$						
Q.2	If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$, is						
	(a) 1 (b) –1 (c) 4 (d) No real values						
Q.3							
	(a) $\cos^{-1}\frac{3}{4}$ (b) $\cos^{-1}\frac{3}{5}$ (c) $\cos^{-1}\frac{4}{5}$ (d) $\frac{\pi}{4}$						
Q.4	that they contradict each other narrating the same incident is						
	(a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$						
Q.5	In an LPP if the objective function $Z=ax + by$ has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same						
	a.Upper limit value b. Minimum value						
	c. Maximum value d. Mean value						
Q.6	If $4\sin^{-1} x + \cos^{-1} x = \pi$, then x is equal to						
	Target Mathematics by- Dr.Agyat Gupta						

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	Visit us at www.agyatgupta.com					
	(a) 0 (b) $\frac{1}{2}$ (c) $-\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{2}}$					
Q.7	A random variable X has the probability distribution					
	X 1 2 3 4 5 6 7 8					
	P(0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.					
	X) 15 23 12 10 20 08 07 05					
	For the events $E = \{X \text{ is prime number}\}$ and $F = \{X < 4\}$, the					
	probability of $P(E \cup F)$ is					
	(a) 0.50 (b) 0.77 (c) 0.35 (d) 0.87					
Q.8	$\int \frac{e^{-x}}{1+e^x} dx =$					
	(a) $\log(1+e^x) - x - e^{-x} + c$ (b) $\log(1+e^x) + x - e^{-x} + c$					
	(c) $\log(1+e^x) - x + e^{-x} + c$ (d) $\log(1+e^x) + x + e^{-x} + c$					
Q.9	Equation of <i>x</i> -axis is					
	(a) $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$ (b) $\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$ (c) $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$ (d) $\frac{x}{0} = \frac{y}{0} = \frac{z}{1}$					
Q.10	The perpendicular distance of the point $(2, 4, -1)$ from the line					
	$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ is					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Fill in the blanks (Q11 – Q15)					
Q.11	The total number of on to function from set A to A if $A=\{1,2,3,$					

	Visit us at www.agyatgupta.com					
Q.12	Let $f(x) = \begin{cases} \frac{1-\cos 4x}{x^2}, & \text{if } x < 0\\ \frac{\sqrt{x}}{\sqrt{16} + \sqrt{x} - 4}, & \text{if } x > 0 \end{cases}$, $\text{if } x = 0$ The value of $a = \dots \dots$					
	so that $f(x)$ is continuous at $x = 0$.					
Q.13	If $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 11 \\ k & 23 \end{pmatrix}$, then write the value of k=					
Q.14	Find the slop of tangent and normal to the curve $y = (\sin 2x + \cot x + 6)^2$, at					
	$x = \frac{\pi}{2} . \tag{OP}$					
	OR If Rolle's Theorem are verified for the function f, given by $f(x) =$					
	$e^{x}(\sin x - \cos x)$ on $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$. Find c.					
Q.15	If two vectors \vec{a} and \vec{b} are such that $ \vec{a} = 2$, $ \vec{b} = 1$ and $\vec{a} \cdot \vec{b} = 1$, then					
	$(3\vec{a}-5\vec{b}).(2\vec{a}+7\vec{b}) =$					
	OR					
	If $\vec{a} = x\hat{i}+2\hat{j}-z\hat{k}$ and $\vec{b} = 3\hat{i}-y\hat{j}+\hat{k}$ are two equal vectors, then write the value of x+y+z.					
	(Q16 - Q20) Answer the following questions					

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	Visit us at www.agyatgupta.com				
Q.16					
	Without expanding prove that $\begin{vmatrix} 1 & ca & b(c+a) \end{vmatrix} = 0.$				
	Without expanding prove that $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix} = 0.$				
Q.17					
	Evaluate: $\int_0^{2\pi} \frac{dx}{1+e^{\sin x}}.$				
Q.18	Evaluate: $\int \frac{dx}{x\sqrt{x^6 - 1}} dx$				
Q.19	Evaluate: $\int \frac{1}{x^2 (x^4 + 1)^{3/4}} dx$				
	OR				
	Evaluate: $\int \frac{dx}{e^x + e^{-x}}$				
Q.20	Write the sum of the order and degree of the following differential				
	equation: $\frac{d}{dx}\left\{\left(\frac{dy}{dx}\right)^3\right\} = 0$.				
	PART - B (Question 21 to 26 carry 2 mark each.)				
Q.21	If $y = \cot^{-1}(\sqrt{\cos x}) - \tan^{-1}(\sqrt{\cos x})$ Prove that $\sin y = \tan^2 \frac{x}{2}$.				
	OR				
	Let A = {1, 2, 3 12} and R be the relation in $A \times A$ defined by $(a,b)R(c,d) \Leftrightarrow ad = bc$ for (a, b), (c, d) $\in A \times A$. Then the number of				
	equivalence class [(2, 3)]				
Q.22	If $y = \sin^{-1} \sqrt{1-x} + \cos^{-1} \sqrt{x}$, show that $\frac{dy}{dx} = -\frac{1}{\sqrt{x(1-x)}}$.				

Visit us at www.agyatgupta.com

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P) Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com			Visit us at www.agyatgupta.com		
	$xe^{\frac{y}{x}} - y\sin(\frac{y}{x}) + x\frac{dy}{dx}\sin(\frac{y}{x}) = 0$, given that y=0, when x =1		OR Two schools P and Q want to award their selected students on the value of Discipline, Politeness and Punctuality. The school P wants to awar		
Q.30			Rs. x each, Rs. y each and Rs. z each for the three respective values to i 3, 2 and 1 students with a total award money of Rs. 1000. Schood		
	OR		wants to spend Rs. 1500 to award its 4, 1 and 3 students on the respective values) by giving the same award money for the three values		
	Evaluate: $\int \frac{x^2}{(x \sin x + \cos x)^2} dx$	Q.34	as before). If the total amount of awards for one prize on each value in Rs. 600, using matrices, find the award money for each value.		
Q.31	Two cards are drawn successively without replacement from well shuffled pack of 52 cards. Find the probability distribution of the number		Find the area of the region bounded by the parabolas $y^2 = 6x \&$		
	of kings. Also, calculate the mean and variance of the distribution.		$x^2 = 6y.$		
	OR A bag contain 4 balls . Two balls are drawn at random , and are found to be white . What is the probability that all balls are white ?	Q.35	Find the equation of the normal to the curve $x^2 = 4y$ which passe through the point (1,2). Also find the equation of corresponding tangent. OR		
Q.32	A dealer in rural area wishes to purchase some sewing machines. He has only Rs. 57600 to invest and has space for at most 20 items. An		A cylinder is such that the sum of its height and the circumference of its base is 10 cm. Find the maximum volume of cylinder.		
	electronic machine costs him Rs. 3600 and a manually operated machine costs Rs. 2400. He can sell an electronic machine at a profit of Rs. 220	Q.36	Find the equation of a plane passing though the line of intersection of th		
	and a manually operated machine at a profit of Rs. 180. Assuming that he can sell all the machines that he buys, how should he invest his		planes. $x + 2y + 3z = 2 \& x - y + z = 3$ and at a distance of $\frac{2}{\sqrt{3}}$ units from		
	money in order to maximize his profit ? Make it as a LPP and solve it graphically.		the points $(3, 1, -1)$.		
	PART – D (Question 33 to 36 carry 6 mark each.)		**************		
Q.33			सपने वो नहीं है जो हम नींद में देखते है, सपने वो है जो हमको नींद नहीं आने देते।		
Q.00					
	$\begin{vmatrix} 1 + \cos A & 1 + \cos B & 1 + \cos C \\ \cos^2 A + \cos A & \cos^2 B + \cos B & \cos^2 C + \cos C \end{vmatrix} = 0$				

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P) Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>